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SINGULARLY PERTURBED PROBLEMS OF HYPERBOLIC-PARABOLIC
TYPE WITH LIPSCHITZIAN NONLINEARITY

We study the behavior of solutions of the Cauchy problem su" (t)+u'(t)+ Au(t)+B(u(t)) = f(t),u(0) =
ug, u'(0) = u; in the Hilbert space H as ¢ — 0, where A4 is a linear, self-adjoint, strong positive operator
and B is nonlinear Lipschitzian operator.

1. Introduction.

Let V and H be the real Hilbert spaces equipped with the norms ||-|| and |-|, respectively,
such that V' C H, where the embedding is defined densely and continuously. By (, ) denote
the scalar product in H. Let A:V — H be a linear, self-adjoint operator and

(Au,u) > w|jul’, YueV, w>0. (1)
Let B : H — H be a nonlinear operator which satisfies the Lipschitz condition
|B(u) — B(v)] < Llju—v|, Yu,v € H. (2)
In this paper we shall study the behavior of the solutions of the problem

{ 210+ 40 4l 4 500 = 10 7,
u(0) = uy, U,(O) = U1 e

as £ — 0, where £ is a small positive parameter. Our aim is to show that © — v as ¢ — 0,
where v is the solution of the problem

{ v'(t) + Av(t) + B(v(t) = f(1),

U(O) = Up, (POJ

The main tool in our approach is the relation between the solutions of the problems
(P.) and (P,) in the linear case.

Let us remind some notations which will be used in the sequel.

For k € N,p € [1,00) and (a,b) C (—oc,+00) we denote by W#?(a,b; H) the usual
Sobolev spaces of vectorial distributions: W*?(a,b; H) = {f € D'(a,b; H); ul) € LP(a,b; H),
[=0,1,...,k} equipped with the norm

k
I wesgpm =0 N s ™™
I=0

For each k € N,W*>(a,b;H) = {f € D'(a,b;H); u¥ € L*°(a,b; H),l = 0,1,...,k} is the
Banach space equipped with the norm

[ f wee (apsmy = po O Lo (a5 0) -

For s € R k € N and p € [1,00] we denote the following Banach spaces WF?(a,b; H) = {f :
(a,b) = H;e~*tf) € LP(a,b;H),l = 0,1,...,k} equipped with the norm

- l
||f||w’;ﬁp{a,b;g) = é&&‘i ||e “f( }(')HLP(a,b;H}-
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2. A priori estimates for solutions of the problem (P.).

In this section we shall prove an a priori estimates for the solutions of the problems (P.)
which are uniform relative to the small values of parameter . First of all we shall remind
the existence theorem for the solutions of the problems (P.) and (P,).

THEOREM A. [1]. Let T > 0. Suppose that f € W1(0,T; H), ug,u; € V and the operators A
and B satisfy the conditions (1) and (2) respectively. Then there exists a unique function u €
C(0,T; H)N L>(0,T; V) satisfying the problem (P.) and the conditions: Au € L>°(0,T: H),
u' € L®(0,T; V), " € L0, T; H).

THEOREM B. [1]. If f € WH(0,T; H),up € V and A and B satisfy the conditions (1), (2),

then there exists a unique strong solution v € W1>(0,T; H) of the problem (P,) and the
estimates

(O] < €@ (juo + [ e (15(r) - BO)ar),

t
/()] < e~ (| uo + Bluo) = FO)|+ | e Er | (rar),

0
are true for 0 <t <T.

We remind that a function v € C([0,T]; H) is said to be a strong solution (in the
following named solution) for Cauchy problem (P.v) if: a)v is absolutely continuous on any
compact subinterval of (0,7); b) v(t) € D(A4) a.e. t € (0,T); ¢) v(0) = uy and v satisfies the
equation from (P.v) a.e. t € (0,7).

Before to prove the estimates for solutions of problem (P.) we recall the following well-
known lemma.

LEMMA A. [2]. Let ¢ € L(a,b)(—o0 < a < b < o0) with ¥ > 0 a. e. on (a,b) and let ¢ be
a fized real constant. If h € C([a, b]) verify

1
—;—hz(t) < %cu f ¥(s)h(s)ds, Vt € [a, B,

then
h(t)| < |c| +f Y(s)ds, Vt € [a,b]

also holds.

Denote by

Ei(u,t) = e|u'(£)] + |u(t)] + (g (Au(t)? u(t))) 1/2 + (5 fU‘ [u'('r)lid*r) 1x2+

+(f: (Au(f),u('r))d'r)lﬂ.

LEMMA 1. Suppose that for any T > 0 f € WH(0,T; H), ug,u; € V and the operators A

and B satisfy the conditions (1) and (2). Then there exists the positive constants v and C
depending on w and L such that for the solutions of the problem (P.) the following estimates

t
Ei(u,t) < Ce™ (El(u, 0) +/
1]

f(r)=B(O)|e"dr), 0<t<T, (3)
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Singularly perturbed problems of hyperbolic-parabolic type with Lipschitzian nonlinearity

1
Ey(w',t) < Ce" (El (u',0) + f f’(’r)\e"”dr), 0<t<T (4)
0

are true. If B =0, then in (3) and (4) v = 0.
Proof. Denote by

E(u,t) = e2u'(t)]* + |u(1‘)|2 + f(—lu t) - ;/ |u'(T)|2dT+

+5(u(t),u’(t)) + ./: (Au('r),u(r))d'r

The direct computations show that for every solution of the problem (P.) the following
equality
d .
ZE(u,t) = () - BO),u(®) + 220'(0)) — ((Bu(®) - BOLu() + /() (5)
is true. Since |B(u) — B(0)| < L|u|, E(u,t) > 0 and |u|(Ju| + 2¢[u'|) < 27E(u,t) with some
~v > 0, then from (5) follows the inequality

d

aﬂmﬂS%Emﬂ+0ﬂﬂ—mmmme@wﬁm) (6)

As |u(t)| + 2¢|u/(t)| < 2C(E(u,t))Y? with some C > 0, then from (6) we have

z
dt

Integrating the last inequality we obtain

(e Ew.1)) < 20| £(2) - B(0)] (E(u,t))we—z'ﬂ-.

%E(u,t)e—m < %E(u, 0) + Cf; e 27 (E(u, r))l’m\f(f) 2 B(O)ldr.

Using Lemma A from the last inequality we get the estimate

(,:E(u,t))”2 <e[(E@.0)

It is easy to see that there exist positive constants Cg,Cl depending only on w such that

f(r) - e -"f*’dr] . (7)

1/2 1/2
CO(E(uEt)) < By(u,) < G (E(-u,t)) : (8)
Using the inequalities (8) from (7) we obtain the estimate (3).

To prove the estimate (4) let us denote by up(t) = u(t + h) —u(t),h > 0, > 0. For any
solution of the problem (P.) we have

%E(uh,t) = (2&(uy(t) + un(t), fo — (B(u(t))n)-
Since

|(B(u(t)n| = |B(u(t + k) — B(u(t))| < Llun(t)|, |2eup, +un(t)| < IC(E s, 1)),
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and
|20, () + un (t)||un(t)| < 27E (un, t),

then we have p

d—;(e_zﬁ’*E(uM)) < 2C(E(un, 1))?|fa(t) €™

Integrating the last inequality we get

t

E(up, t)e™™" < E(up, 0) + /.f3_2w|fn('r)|(E(un.,'r))l’mdr.

0

Dividing the last inequality by 2% and then passing to the limit as h — 0 we get
t
E(u,t)e™" < B(u,0) +f eI (N(B (W, 7)) dr. 9)
0

Since u/'(0) = uy,eu”(0) = f(0) — Aug — u; — B(ug) , then using Lemma A and (8) from (9)
we obtain the estimate (4) in the same way as was obtained the the estimate (3). Lemma 1
is proved.

3. Relation between the solutions of the problems (P.) and (F,) in the linear
case.

In this section we shall give the relation between the solutions of the problem (P.) and
(Pp) in the linear case, i. e. in the case when B = 0. This relation was inspired by the work
[3]. At first we shall prove some properties of the kernel K (¢, 7,¢) of transformation which
realizes this connection.

For £ > 0 denote

i 1
K(f,?‘, 5) = m(!{l(t?'ﬂf) + BKQ(t,T,E) = 21{3(1‘,7',8)),
where
. 3t — 27 2t — 1 i 3t+ 67 2t 4+ 71
Rl(t,T,E):exp{ 7o }/\(2 ;f_)’ g(t,r,e)=exp{ e })\(2\@),
% t+7 L s
& &l = — = 5
K3(t,7,e) = exp 5}/\(2\/5_15)’ A(s) [ e " dn.

LEMMA 2. |4] The function K (t,,c) possesses the following properties:

(i) For any fitede >0 K € C({t > 0} x {r > 0}) nC>®({t > 0} x {r > 0});
(i) Kl ne) =eR, . .[b7.6) =K. L5}, 10,780
(iii) K. (t,0,¢) — K(t,0,6) =0, > 0;

=
2e

(v) For each fized t > 0, s,q € N there ezist constants Cy(s,q,t,£) > 0 and Cy(s,q,t) > 0
such that

1
5 L B e
(iv) K(0,7,¢) = e‘{p{ }, 2=

|07 02K (t,1,¢)| < Ci(s,q,t,¢) exp{—Ca(s,q,t)T/c}, T>0;
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Singularly perturbed problems of hyperbolic-parabolic type with Lipschitzian nonlinearity

i) Klf.re) >0, 120, +20;
(vii) Let € be fized, 0 < ¢ < 1. For any ¢ : [0,00) — H continuous on [0,00) such that
lo(t)| £ M exp{Ct}, t > 0, the relation

]imf K(t,7,e)o(r)dr —/ e " p(2eT)dr,
=0 J, 0
18 valid in H;
(via) [ K, me)dr =1, t20;
(ix) Suppose p : [0,00) — R possesses the following properties: p € C'[0,0c), p and p' are

increasing functions and |p(t)] < Mexp{ct}, |p'(t)| < M exp{ct}, for t € [0,00). Then
there exist positive constants Cy and Cy such that

f (7.8 lolt) e b\ e On/e o Ot - £
0

(x) Let f(t) € WE(0,00: H) with some C > 0. Then there ezist positive constants Cy,Cy
such that

lf(t) —/ K(t,T,E)f(T)dT‘H < CL\/Eexp{Cgt}||f'||L%c(nm;H)¢ >0, O<exl;
0

(xi) There exists C > 0 such that

/ / exp{ }dﬂdr =Ce, 120, =310.

Now we are ready to establish the relation between the solutions of the problem (F.)

and the corresponding solutions of the problem (F) in the linear case, i. e. in the case when
B=0,

THEOREM 1. Let A : D(A) C H — H be a linear and closed operator, f € LE(0,00; H) for

some C' > 0. If w is a solution of the problem (P.) such that u € W'é‘” (0, 00; H) with some
C > 0, then the function vy which is defined by

vo(t) = /:c K(t, 1, e)u(r)dr

is a solution of the following problem:

{ vo(t) + Auo(t) = Fo(t,e), t>0, (P.vo)

UO(O) = e,

where

Fylt,g) = %[26}@{2—2})\( g) - /\(%\E)]ul + /000 K(t. v &) f(r)dr;
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(pf:/ e "u(2eT)dr.
0

Proof. Integrating by parts and using the properties (i) — (iii) and (v) of Lemma 2 we get

O

v(t) = /:c Ki(t, 7, e)u(r)dr =]

0

0

(EKT,_(t,T._ £) — K, (t,, E))u(r)dr -

o

= /w Kit, ;&) (Eu”(?‘) —+ u’(r})d’r + eK(t,0,)u; — Avg(t) + foo K(t,7,e)f(r)dr.
0

!

Thus v, () satisfies the equation from (P.vg). From property (viii) of Lemma 2 follows the

validity of the initial condition of (P.vy). Theorem 1 is proved.

4. Limits of the solutions of the problem (P.) as ¢ — 0.

In this section we shall study the behavior of the solutions of the problem (P.) as ¢ — 0.
THEOREM 2. Suppose [ € I-1-’é‘°°(0,oo; H), with some C > 0, ug,u; € V and the operators

A and B satisfy the condition (1) and (2) respectively. Then there erist positive constants

C1,Cy such that
lu(t) — v(t)| < C1Me /e, t>0, 0<e<x 1,

where u and v are the solutions of the problems (P.) and (P.v), respectively,
M = |£(0)] + [uo| + [Auo| + |B(uo)| + |ua| + ||f’“1-1-'g;°°{o,ao;H)v

and Cy and Cy are independent on M and ¢.

Proof. Under the conditions of the theorem from (4) follows the estimate
19 (@)l 0.0050) < CM, £ 20

According to Theorem 1 the function w which is defined by

w(t) = /:o K(t,7,e)u(r)dr

is a solution of the problem

where

F(t,e) = Fy(t,e) + /:: K(t,m,e)f(r)dr — f:c K(t, 1,e)B(u(r))dr,

Fo(t,e) = %[? exp{%})\(\/g) - ,\(% 2)}@;1, Wy = /nm e "u(2eT)dr.

Using the properties (vi),(viii) and (x) of Lemma 2 and the estimate (11) we get
[u(t) = w(t)] < Ce™E||u' (1) |15 000y < CMeVE, ¢ 0.
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Singularly perturbed problems of hyperbolic-parabolic type with Lipschitzian nonlinearity

Let us denote R(t) = v(t) — w(t), where v is the solution of the problem (P.v) and w is the
solution of the problem (P.w). Then R(t) is the solution of the problem

{ R'(t) + AR(t) = B(w(t)) — B(v(t)) + F(t,e), t=>0,
R(O) = Ry,

where Ry = ug — wy and
Flte= )~ f:o K(t,7,e)f(r)dr — Fy(t,e) — B(w(t)) + ./0’00 K (t,7,)B(u(r))dr.
As R(t) € V and V" is continuously embedded in H then
(AR(1), R(1)) 2 w||R(®)|I* = wol R()[*, w0 > 0.

Therefore
%IR(t)l" e _2(‘4R(t), R(t)) e Z(R(t),B(w(t)) - B(v(t)) I z(f(t,g), R(f,)) <

< 2w |R(@)? + 2| F(,e)||R®)|, t20, wi=-wo+L,
and hence . :
o I} ; i
SIROF ™ < SR+ [ IFE IR dr, ¢ 0
0

then using Lemma A we obtain the estimate
t
|R(t)| < e““t(IRnl +f |.7-"(T=e)|e_“”d‘r), g (13)
0

From (11) follows the estimate
oo oo 2eT
|Ro| < f e " |u(2eT) — upldT < / e“”f |u'(s)|dsdT <
0 0 0

< 2¢CM f re TR Iy < OMe; 0 zipg (401). (14)
0
Now let us estimate |F(t,<)|. Using the property (x) of Lemma 2 we have
‘f(f) —/ K(t,’r)f(T)dr‘ < O\MAEe%, t30.0<e<1. (15)
0

As e"A\(y/7) < C,7 > 0, then for ¢ € (0, (8]w;|)~!] we have

/‘: exp {i—; - wlf}/\(\/g)dr < E/f exp {3{ + Iqulre})\(\/F)d'r i

% Cf e BA(VT)dT = Ce/ e B AMT)dr < Ce, 120, 0<ex],
0

0
and

t i} . = i
/ e‘“lT’\(§\/§)dT55 | emimaGynir<ce, 120, 0<e<l
0
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Therefore we get the estimate
/Dte""lT|Fn('r,5)|dr <Celyy|€£CeM, t>20, 0<exl.
Let us estimate the difference
1) = /g " K(t,7,€)Bu(r))dr — Bw(®)) = L(t) + h(b)

where due to property (viii) of Lemma 2

Li(t) = /:C K(t,1,¢) (B(u('r)) - B(w(r)))dr,

L) = fnm K(t,1,¢) (B(w[’?')) o B(w(t)))d'r.

Using condition (2), the estimate (12) and property (ix) of Lemma 2 we have

L) < CLM/z / K(t,r,e)eSdr <
0

< CM\/E/ K(t,1,¢) (|ec2‘— — et 4 ecgt)dT < CM+/ze’,
0

(16)

(18)

To estimate I,(t) we will evaluate the function w'(t). Integrating by parts and using the

properties (ii), (iii) and (iv) of Lemma 2 we have

withe fﬂm Kt r.elulr)dr = fﬂm (sKﬂ(t,T, g) — KT(t,T,E))'u-(T)dT —

= — /:G (sK,_(t, T,e) — K(t,7, s))u’(r)dq— =
3

SO, i K(t,r,e)u'(T)dr + o /000 (Kg(t,’?', e) — Ks(t, T, E))u'('r)d'r.

2 /o 4/Te

Due the estimate (11) we get
‘/ C(t, T e)u (T d’r‘ £ CU/ K(t,7,6)e®dr <

o0
<CM f K(t,T, s)(|eC2T — | 4 ec"?t)d’r < CMe?, t>0.
0
Also integrating by parts we obtain the estimates
(xi )
/ Ki(t,7,6)e“?"dr < Cee®®, i=2,3, t>0, 0<e<]l.
0
Using (19), (20) and (21) we get
W'(t)| < CMeSst, t>0, 0<e<1.
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Singularly perturbed problems of hyperbolic-parabolic type with Lipschitzian nonlinearity

The estimate (22) and property (ix) of Lemma 2 permit to evaluate I5(t).

|I(t)] < j:c K(t,1,e)|B(w(r)) — B(w(t))|dr < L/OOO K(t,7,¢) j: u-"(s)ds‘dr £

< LC-‘M/ K g)‘e@* —e®T|dr <K CMeP gk, 120, 0<e<l  (23)
0

From (17), (18) and (23) we get
H@)| < €Me?'ye, £ 30, Dze<l (24)

From (15), (16) and (24) follows the estimate
i
/ =T\ F(r,e)|dr < CMeS* 2, t>0, 0<&<l. (25)
S0

From (13), using the estimates (14) and (25) we get
|R(E)| £ CiMePh/e, £20, 0<e< L (26)
Finally from the estimates (12) and (26) we have
u(t) — v(t)] < |ut) — w(t)] + |R(E)] < C1MeSVE, 120, 0<e< 1.
The estimate (10) is proved.
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